Loading Events

« All Events

  • This event has passed.

Thesis Defence: Non-Invasive Passive Hand Tremor Control Orthoses

December 1, 2022 at 9:00 am - 12:00 pm

Manthan Shah, supervised by Dr. Hadi Mohammadi, will defend their thesis titled “Non-Invasive Passive Hand Tremor Control Orthoses” in partial fulfillment of the requirements for the degree of Master of Applied Science in Mechanical Engineering.

An abstract for Manthan’s thesis is included below.

Defences are open to all members of the campus community as well as the general public.

Registration is not required for in-person defences.


Hand tremors are one of the most prevalent neurodegenerative movement disorders leading to involuntary muscle movements majorly observed in old-age patients. Almost 25 M+ Parkinson’s Disease and Essential tremor patients exhibit moderate to severe hand tremors worldwide. Tremors are not life-threatening, but they may cause substantial physical impairment and severe negative social consequences, possibly affecting the quality of life. Many drugs, medications, and neuro surgeries have been researched and are available in the market to treat tremors. However, due to the reduced effect of medication after prolonged use and probable complications of invasive neurosurgeries, a non-invasive wearable solution must be provided to dampen the hand tremors. Wearable devices have become a well-endorsed alternative for patients with moderate to severe hand tremors, although they have significant engineering challenges and risk factors. The development of wearable solutions has become prominent, and companies are in a race to develop the most effective device commercially. Howbeit, higher costs, larger weights, lack of experiments, limited application, and device efficiency are constraints for the most commercially available devices. This thesis is focused on evaluating the feasibility of a non-invasive novel hand tremor attenuator. It comprises four major components: mathematical modelling and computational validation of the proposed absorber, design and fabrication of absorber, design and fabrication of hand tremor simulator, and extensive testing of the absorber. Additionally, a comprehensive literature review was performed on classifying and diagnosing tremors, anatomy of the upper limb, medications, pharmacotherapies to cure tremors, upper limb anatomy, and available wearable orthoses to suppress tremors.

A mathematical model is developed with the concepts of mechanical vibrations to evaluate the dynamic response of the absorber computationally. A novel T-beam absorber is designed with the mass-spring arrangement. Three tremor simulators were designed to evaluate the viability and assess the design parameters of the absorber. After wide-ranging experiments, the proposed absorber represented a higher amplitude reduction of up to 80% for a range of frequencies. Future research will focus on designing an ergonomic wearable device with a proposed absorber that can passively attenuate the tremor at various frequencies.


December 1, 2022
9:00 am - 12:00 pm


Engineering, Management, and Education Building (EME)
1137 Alumni Ave
Kelowna, BC V1V 1V7 Canada
+ Google Map

Additional Info

Room Number
Registration/RSVP Required
Event Type
Thesis Defence
Research and Innovation, Science, Technology and Engineering
Alumni, Community, Faculty, Staff, Families, Partners and Industry, Students, Postdoctoral Fellows and Research Associates